Skip Links

USGS - science for a changing world

Geologic Investigations Series Map I-2642

Geologic Maps of the Dardanus Sulcus (Jg–6), Misharu (Jg–10), Nabu (Jg–11), and Namtar (Jg–14) Quadrangles of Ganymede

By Ted A. Maxwell and Ursula B. Marvin

Thumbnail of and link to map PDF (19.3 MB)Summary

Ganymede is the largest (~5,200 km diameter) of the Jovian satellites. Surficial features on Ganymede, as recorded by the Voyager 1 and 2 spacecraft (Smith and others, 1979a; 1979b), indicate a complex history of crustal formation. Several episodes of crustal modification led to the formation of curvilinear systems of furrows in dark terrain, the emplacement of light materials, and the creation of grooves in light terrain. Prior to exploration of the Jovian system by spacecraft, Earth-based observations established that the surface of Ganymede is dominated by water ice with various admixtures of fine silicate (rock) material (Pilcher and others, 1972; Sill and Clark, 1982). No agreement yet exists as to the amount of water in the near surface material; early estimates based on spectral reflectance data suggested that half the surface was covered by nearly pure water ice, whereas later studies by Clark (1981) indicated that up to 95% of the surface could be water ice and still be consistent with spectroscopic data. The Pioneer encounters with the Jovian system in 1973 and 1974 confirmed that Ganymede was made up of patches of light and dark terrain but did not have the spatial resolution needed to determine the percent cover of water ice, or geologic relations of surface materials. Not until the Voyager encounters was the surface seen with sufficient detail to enable geologic mapping. On the basis of albedo contrasts, surface morphology, crater density, and superposition relations, geologic mapping was done using principles and techniques that have been applied to the Earth, Moon, and other terrestrial planets (Wilhelms, 1972). Considerable uncertainty exists in applying such methods to bodies having icy crusts, as the internal processes that produce their surface configurations are poorly understood, and the resolution of the Voyager images is barely sufficient to show the detail required to interpret structural and stratigraphic relations. With the exception of the extreme southeastern portion of the Namtar quadrangle (Jg- 14), all images used for mapping were taken by Voyager 1. At the time of encounter, the eastern portion of the Misharu (Jg–10) and Namtar quadrangles were near the terminator, making it difficult to distinguish albedo variations best seen at high sun angles. The western quadrangles were imaged at resolutions of 2–5 km/pixel (Batson and others, 1980) from an oblique angle, so albedo variations can be seen, but topography and morphology are not well expressed in the images.

First posted January 8, 2004

For questions about the content of this report, contact Ken Tanaka

For additional information, contact:
Astrogeology Science Center
U.S. Geological Survey
2255 N. Gemini Drive
Flagstaff, AZ 86001
http://astrogeology.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Maxwell, Ted A.; Marvin, Ursula B., 2001, Geologic Maps of the Dardanus Sulcus (Jg-6), Misharu (Jg-10), Nabu (Jg-11), and Namtar (Jg-14) Quadrangles of Ganymede: U.S. Geological Survey Geologic Investigations Series Map I-2642, 2 sheets, https://pubs.usgs.gov/imap/2642/.




Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/imap/2642/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, 30-Nov-2016 17:41:08 EST