PRINCIPAL FACTS FOR GRAVITY STATIONS IN THE VICINITY OF COYOTE SPRING VALLEY, NEVADA, WITH INITIAL GRAVITY MODELING RESULTS

by Geoffrey A. Phelps, E.B. Jewel, V.E. Langenheim and R.C. Jachens

Open-File Report 00-420

2000

Prepared in cooperation with the Southern Nevada Water Authority

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
U.S. DEPARTMENT OF THE INTERIOR
U.S. GEOLOGICAL SURVEY
${ }^{1}$ U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

U.S. DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY
${ }^{1}$ U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA

Abstract

Gravity measurements were made along 5 profiles across parts of the Coyote Spring Valley and vicinity in order to aid in modeling the depth and shapes of the underlying basins and to locate faults concealed beneath the basin fill. Measurements were taken at $200 \mathrm{~m}(660 \mathrm{ft})$ spacing along the profiles. Models based on these and existing regional data reveal two north-south-trending basins beneath Coyote Spring Valley that reach maximum depths of greater than $1 \mathrm{~km}(0.6 \mathrm{mi})$. A small valley, located just east of Coyote Spring Valley and containing Dead Man Wash, includes a small basin about 500 $\mathrm{m}(1600 \mathrm{ft})$ deep that appears to be the southern continuation of the northern basin beneath Coyote Spring Valley. The profile gravity data are further used to identify the locations of possible faults concealed beneath the basin fill.

INTRODUCTION

At the request of the Southern Nevada Water Authority, the U.S. Geological Survey conducted a gravity survey in the Coyote Spring Valley and vicinity, Clark and Lincoln Counties, Nevada, during May, 2000. The purpose of the survey was to help define the shapes of young basins filled with Cenozoic rocks and alluvium, and to identify any possible faults within these basins that might influence the movement of groundwater. The gravity measurements were taken along detailed profiles crossing the southwestern end of Kane Springs Valley, parts of Coyote Spring Valley, and the small valley (located $25 \mathrm{~km}(15 \mathrm{mi})$ WNW of Glendale and Moapa, NV) just east of Coyote Spring Valley that contains Dead Man Wash and a section of Pahranagat Wash (fig. 1).

Coyote Spring Valley is a north-south-trending valley about $80 \mathrm{~km}(50 \mathrm{mi})$ north of Las Vegas, NV. The valley areas containing the gravity profiles are bounded on the west by the Sheep and Las Vegas Ranges, on the north by the Delamar Mountains, and on the east by the Meadow Valley Mountains. The Arrow Canyon Range projects from the south into the southernmost gravity profiles (figs. 1 and 2).

The valleys in the study area were created by Miocene extension of the crust that formed the basins and ranges that make up most of Nevada today (Stewart, 1980). The ranges

Figure 1. Index map showing Coyote Spring Valley study area and vicinity, Nevada. Black areas have outcrops of Cenozoic volcanic rocks, gray areas have outcrops of Paleozoic rocks, and white areas indicate areas covered by Cenozoic basin fill. Solid triangles indicate locations where samples of Paleozoic rock were collected for density measurements.

Figure 2. Map showing isostatic residual gravity of Coyote Spring Valley and vicinity. Contour interval = 2 mGal . Open circles show gravity stations. Gray bands labelled N1-N2 and S1-S4 are detailed gravity profiles that were modeled to define basin shape. Red lines indicate faults mapped by Dohrenwend and others (1996). See figure 1 for geology and culture. Refer to Plate 1 for larger scale presentation of these data.
surrounding the study area (and presumably the floors of the intervening basins) are composed primarily of Paleozoic carbonate rocks (Stewart and Carlson, 1978) which typically have densities of $2.7 \mathrm{~g} / \mathrm{cm}^{3}$ or greater. The basins are filled primarily with Miocene tuffaceous sedimentary rocks (with minor tuff) and Quaternary alluvium. These basin fill deposits are typically much lower in density than the Paleozoic carbonate rocks with which they are in contact. Because of the large density contrast between the basin fill and the surrounding carbonate rocks, gravity techniques are well suited for defining the subsurface shapes of the basins and the geometries of the faults that bound the basins.

Previous geophysical work relevant to the present study are limited. Kane and others (1979) and Healey and others (1981) published gravity maps containing about 50 measurements in the vicinity of Coyote Spring Valley. Although more recent compilations more than doubled the number of measurements (Ponce, 1997), the coverage remained too sparse for the purposes of the present study. Geophysical logs for 8 wells in the Coyote Springs Valley area, including 4 wells drilled by the U.S. Air Force as part of the Nevada-Utah MX missile-siting investigation, contain lithologic, density, and electrical information (Berger and others, 1988). Saltus and Jachens (1995) examined the shape and distribution of basins throughout the Basin and Range Province by inverting regional gravity data to yield the thickness of Cenozoic deposits. However, their spatial resolution (2 km) is too coarse to provide useful local information for the present study. Carpenter and Carpenter (1994) analyzed seismic reflection profiles in southern Nevada and surrounding areas, one of which coincides with one of the southern gravity profiles included in this study. This seismic reflection profile provides a valuable check and confirmation of the gravity interpretations.

DATA COLLECTION AND REDUCTION

224 gravity measurements, spaced $200 \mathrm{~m}(660 \mathrm{ft})$ apart, were taken along 5 profiles (fig. 2 and plate 1). Measurement locations were determined using a Trimble 1440 RTK (realtime kinematic) Global Positioning System (GPS) to record longitude, latitude, and elevation. Locations were recorded relative to GPS base stations located on local benchmarks. Benchmarks were located horizontally using Rockwell PLGR GPS units, which have an uncertainty of $7 \mathrm{~m}(23 \mathrm{ft})$. The vertical datum was provided by the elevation posted on the benchmarks, which gave elevation to the nearest foot. The Trimble RTK System typically has a relative error of 5 to $10 \mathrm{~cm}(2-4 \mathrm{in})$ in the horizontal direction and $10-20 \mathrm{~cm}(4-8 \mathrm{in})$ in the vertical direction. Therefore, the absolute locations of the gravity observations have uncertainties of at least $7 \mathrm{~m}(23 \mathrm{ft})$ horizontally and 0.3 $\mathrm{m}(1 \mathrm{ft})$ vertically, but have smaller uncertainties in the relative positions and elevations of data along each profile. The relative positional uncertainties are the important ones for defining the shapes of the basins.

Projection UTM, Zone 11
Datum NAD27
Proiection UTM, Z
Datum NAD27
geology from Stew
geology rom Stewart and Carlson, 1978

Gravity data were collected during May 2000 using LaCoste and Romberg gravity meter G17c. All gravity data were tied to a gravity base station, GLEN, established at the Glendale Hotel in Glendale, NV. GLEN has a value of $979,682.63 \mathrm{mGal}$ based on ties to LVGS, a gravity base station in front of the U.S. Geological Survey office in Las Vegas, NV (observed gravity 979,593.62 mGal).

Gravity data were reduced using the Geodetic Reference System of 1967 (International Union of Geodesy and Geophysics, 1971) and referenced to the International Gravity Standardization Net 1971 gravity datum (Morelli, 1974, p. 18). Gravity data were reduced to isostatic residual gravity anomalies using standard procedures (e.g. Telford and others, 1976) with a reduction density of $2.67 \mathrm{~g} / \mathrm{cm}^{3}$ and include earth-tide, instrument drift, free-air, latitude, Bouguer, curvature, and terrain corrections. An isostatic correction, using a sea-level crustal thickness of $25 \mathrm{~km}(16 \mathrm{mi})$, an upper crustal density of $2.67 \mathrm{~g} / \mathrm{cm}^{3}$, and a mantle-crust density contrast of $0.40 \mathrm{~g} / \mathrm{cm}^{3}$, was applied to the gravity data to remove long-wavelength gravity anomalies resulting from isostatic compensation of the topography by deep density distributions. The resulting isostatic residual gravity anomalies reflect, to first order, density variations within the middle and upper crust (Simpson and others, 1986).

Terrain corrections were computed to a radial distance of $167 \mathrm{~km}(104 \mathrm{mi})$ and involved a 3-part process: 1) Hayford-Bowie zones A and B with an outer radius of $68 \mathrm{~m}(223 \mathrm{ft})$ were estimated in the field with the aid of tables and charts; 2) Hayford-Bowie zones C and D with an outer radius of 590 m (1936 ft) were computed using a $30-\mathrm{m}(100-\mathrm{ft}$ digital elevation model; and 3) terrain corrections from a distance of $0.59 \mathrm{~km}(1936 \mathrm{ft})$ to $167 \mathrm{~km}(104 \mathrm{mi})$ were calculated using a digital elevation model and procedure by Plouff (1977). Total terrain corrections for stations measured during this study range from 0.24 to 3.73 mGal , averaging $1.14 \mathrm{mGal} .95 \%$ of the terrain corrections are less than 2 mGal . Uncertainties in the total terrain corrections, based on experience in other areas of Nevada, are estimated to be about 10% of the total correction. Because most of the gravity measurements were made far from the rugged topography that results in large terrain corrections, we estimate the uncertainty in terrain corrections for typical observations in this survey to be less than 0.2 mGal .

The reduced gravity data collected during this study are presented in Appendix 1. We estimate that the total uncertainty associated with these data, based on uncertainties in observed gravity (from meter drift and calibration uncertainties), horizontal position, elevation, and terrain correction, to be typically less than 0.3 mGal , although slightly larger uncertainties correspond to measurements with large terrain corrections (Appendix
1). These uncertainties are substantially smaller than the gravity anomalies associated with the basins, typically on the order of $5.0-10.0 \mathrm{mGal}$, and do not limit the modeling of the gravity anomalies in terms of basin structure.

The isostatic residual gravity field of the study area, as defined by our new data and all other existing data, is shown in figure 2 and on plate 1 . As expected, the valleys are characterized by gravity lows (associated with the low-density deposits contained in them) and the surrounding ranges are characterized by gravity highs.

DENSITY DATA

Sixteen samples were taken at several outcrops (fig. 1) and measurements of sample density were made in the laboratory. With 1 exception the samples are Paleozoic carbonate rocks, which exhibit a mean density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. The density of Quaternary alluvium was not measured directly, but was inferred to be approximately $2.15 \mathrm{~g} / \mathrm{cm}^{3}$ based on density logs in shallow wells within the study area (Berger and others, 1988). Densities of older and deeper basin-filling deposits have not been measured locally within the study area, but have been estimated region-wide (Saltus and Jachens, 1995; Jachens and Moring, 1990), and indirectly measured in a deep well in Morman Mesa 50 $\mathrm{km}(30 \mathrm{mi})$ to the east (Langenheim and others, 2000).

DEPTH TO PALEOZOIC ROCKS

We combined the gravity data collected during this study with existing data to estimate the areal form and distribution of basins in order to provide a regional framework within which to interpret the detailed gravity profiles. We used an iterative gravity inversion method that combines the gravity data with exposed geology, drill hole information, and other geophysical data to estimate the thickness of basin-filling deposits. The method used is an updated version of the method developed by Jachens and Moring (1990) that incorporates additional point data where the basin-fill thickness is known. The method partitions the gravity field into two components, one caused by variations in the thickness of the low-density basin fill, and the other caused by variations of density within the underlying Paleozoic rock. The 'basin-fill' component, together with an assumed vertical variation of density within the basin fill, are inverted to produce a 3-dimensional image of the basins. The method is iterative, successively yielding improved approximations to the shapes of the basins while simultaneously accounting for the gravity field variations caused by density variations within the Paleozoic rock and those caused by the lateral effects of low density basin deposits at locations in the surrounding ranges. For details of this method, the reader is referred to Jachens and Moring (1990) and Saltus and Jachens (1995).

The results of this inversion for Coyote Spring Valley and vicinity are shown in figure 3. The results show two deep basins (the northern crossed by profile N2 and the southern crossed by profiles S1 and S3) beneath the axis of Coyote Spring Valley, both reaching maximum depths greater than about $1 \mathrm{~km}(3300 \mathrm{ft})$. The deepest parts of both basins are aligned north-south and are separated from each other by a NNW-trending, shallowlyburied, bedrock ridge that is the northward continuation of the Arrow Canyon Range. A smaller basin (maximum depth of about $500 \mathrm{~m}(1600 \mathrm{ft})$) lies beneath the valley containing Dead Man Wash and part of Pahranagat Wash, and appears to be the southern continuation of the northern basin beneath Coyote Spring Valley.

The general shapes and locations of the basins are reasonably well constrained by the gravity data, but the details of the basins must be viewed with caution. Except along the detailed gravity profiles, gravity data are sparsely distributed and the resulting basin definition is poor at best. In particular, the southern part of the northernmost basin and the northern part of the Dead Man Wash basin are quite uncertain because of the absence of gravity stations in the Meadow Valley Mountains (fig. 2). A better distribution of gravity stations in the ranges would lead to an improved estimate of the depths of the basins. An interesting characteristic of the southernmost basin beneath Coyote Spring Valley is that the main basin edge (as defined by the abrupt increase in basin depth), does not lie along the western edge of the Arrow Canyon Range, but rather some 2-3 km (1.52 mi) west of the range front. The seismic reflection profile analyzed by Carpenter and Carpenter (1994) confirms the offset between the Arrow Canyon Range front and the basin boundary (presumably a normal fault). We do not have enough data to say whether the eastern edge of the northern basin also is systematically displaced westward relative to the range-front of the Meadow Valley Mountains, but the results from gravity modeling discussed in the next section suggest that the basin's edge is within about 1 km (0.6 mi) of the range front.

INTERPRETATION OF DETAILED GRAVITY PROFILES

Gravity models were constructed along 5 profiles (N1-N2 and S1-S4 on figure 2) in order to examine the detailed cross-sectional shapes of the basins and the structures that bound them. A constant density contrast of $-0.55 \mathrm{~g} / \mathrm{cm}^{3}$ was used for each model based on a density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$ for the Paleozoic carbonate rocks and a basin fill density of 2.15 $\mathrm{g} / \mathrm{cm}^{3}$, the average density of the alluvium measured in two wells near the study area (CSV-1 and CSV-3, in Berger and others, 1988). The results of this modeling are shown in figures 4-6.

Within the Basin and Range province, faults resulting from the Miocene crustal extension often are characterized by abrupt lateral changes in the thickness of Cenozoic basin fill of

Figure 3. Basin thickness map of the study area. Contour intervals, $250 \mathrm{~m}, 1 \mathrm{~km}$. Contours dashed where poorly constrained. White and black circles, gravity stations; blue dots, wells that penetrate pre-Cenozoic basement. Black areas have outcrops of Cenozoic volcanic rocks, gray areas have outcrops of Paleozoic rocks, and white areas indicate areas covered by Cenozoic basin fill.
a few hundred meters or more. This relationship is well illustrated along model-profile S1 (fig. 4) where four possible faults are identified in areas of abrupt lateral changes in the thickness of the basin fill. Three of these (identified by asterisks) correspond to faults identified by Carpenter and Carpenter (1994) on the basis of seismic reflection profiling and two (identified by open circles) correspond to faults mapped by Dohrenwend and others (1996). The fourth and westernmost possible fault in figure 4 lies beyond the western end of the seismic reflection profile.

Figure 5 shows gravity models along the two northern profiles, N1 and N2, and figure 6 shows two additional gravity models along southern profiles S3 and S4. Locations of abrupt lateral changes in the thickness of basin fill are identified as possible locations of faults on figures 5 and 6, and their locations in map view are shown on plate 1. A model along profile S 2 yielded only a thin, relatively uniform layer of basin fill a few hundred meters thick, and showed no characteristic features that would suggest faults.

The models shown are based on an assumed density contrast of $-0.55 \mathrm{~g} / \mathrm{cm}^{3}$ between Paleozoic rock and the basin fill. This density contrast is uncertain primarily because actual measurements of the density of the basin fill are few, and because the density of the fill in the deeper parts of the basin has not been measured locally. We estimate that these uncertainties could be as large as $0.1 \mathrm{~g} / \mathrm{cm}^{3}$ or about 20%. If the actual density contrast along any profile is smaller in magnitude than $-0.55 \mathrm{~g} / \mathrm{cm}^{3}$, the actual depth to Paleozoic rock will be greater than that shown (roughly in proportion to the percentage error). If the actual density contrast is larger, then the depth will decrease. In general, however, the shape of the basin and the locations of abrupt lateral changes in the thickness of the basin fill will not change. Therefore, the locations of possible faults defined by the gravity modeling should not be affected by any reasonable uncertainty in the density contrast used to model the gravity data.

DISCUSSION

Gravity surveys provide an effective method for defining the configuration of concealed Cenozoic basins in the vicinity of Coyote Spring Valley, and, based on a comparison between gravity modeling results and seismic reflection profiling along S1, detailed gravity profiles can be effective in identifying concealed faults. Although the subsurface configuration of the basins are well constrained along the detailed profiles of the present study, the gravity data throughout the rest of Coyote Spring Valley are too sparsely distributed to give more than a generalized image of the basins and their bounding faults. Additional gravity surveys could be used to refine the image of the basins and faults and to trace individual fault strands and establish their continuity. Analysis of aeromagnetic data over the study area in conjunction with the gravity field produced by the Paleozoic

Figure 4. Gravity model along profile S1. Density contrast between Paleozoic bedrock and Cenozoic basin fill, $-0.55 \mathrm{~g} / \mathrm{cm}^{3}$. Pz--Paleozoic rock; Cs--Cenozoic basin fill. Faults marked by asterisks correspond to faults identified by Carpenter and Carpenter (1994) on the basis of seismic reflection profiling and faults marked by open circles correspond to faults mapped by Dohrenwend and others (1996).

Figure 5. Gravity models along profiles N1 and N2. Density contrast between Paleozoic bedrock and Cenozoic basin fill, $-0.55 \mathrm{~g} / \mathrm{cm}^{3}$. Pz--Paleozoic rock; Cs--Cenozoic basin fill. Faults marked by open circles correspond to faults mapped by Dohrenwend and others (1996). Arrow indicates location of fault shown by Stewart and Carlson, 1978.

Figure 6. Gravity models along profiles S3 and S4. Density contrast between Paleozoic bedrock and Cenozoic basin fill, $-0.55 \mathrm{~g} / \mathrm{cm}^{3}$. Pz--Paleozoic rock; Cs--Cenozoic basin fill. A linear, westward decreasing regional gradient was removed from profile S4 prior to modeling. Fault marked by an open circle corresponds to a fault mapped by Dohrenwend and others (1996). Well CSV-1 (Berger and others, 1988) is 765 ft deep and did not reach Paleozoic rock.
bedrock (a map that is an outgrowth of the basin-depth inversion) can yield additional information about the lithology and structures within the pre-Cenozoic rock. All of this information could serve as the basis for improving the hydrogeologic framework of the region which, in turn, could be used in a refined ground-water flow model.

REFERENCES CITED

Berger, D.L., Kilroy, K.C., and Schaefer, D.H., 1988, Geophysical logs and hydrologic data for eight wells in the Coyote Spring Valley area, Clark and Lincoln Counties, Nevada: U.S. Geological Survey Open file Report 87-679, 59 p.

Carpenter, J.A., and Carpenter, D.G., 1994, Structural and Stratigraphic Relations in a Critical Part of the Mormon Mountains, Nevada, in Dobbs, S.W., and Taylor, W.J., eds., Nevada Petroleum Society 1994 Conference Volume II, (Book 1), p. 95-126.

Dohrenwend, J.C., Schell, B.A., Menges, C.M., Moring, B.C., and McKittrick, M.A., 1996, Reconnaissance photogeologic map of young (Quaternary and late Tertiary) faults in Nevada: Nevada Bureau of Mines and Geology Open-File Report 96-2.

Healey, D.L., Snyder, D.B., Wahl, R.R., and Currey, F.E., 1981, Bouguer gravity map of Nevada: Caliente Sheet: Nevada Bureau of Mines and Geology Map 70, scale 1:250,000.

International Union of Geodesy and Geophysics, 1971, Geodetic Reference System 1967: International Association of Geodesy Special Publication no. 3, 116 p.

Jachens, R.C., and Moring, B.C., 1990, Maps of the thickness of Cenozoic deposits and the isostatic residual gravity over basement for Nevada: U.S. Geological Survey Open-File Report 90-404, 15 p., 2 plates.

Kane, M.F., Healey, D.L., Peterson, D.L., Kaufmann, H.E., and Reidy, D., 1979, Bouguer gravity map of Nevada: Las Vegas sheet: Nevada Bureau of Mines and Geology Map 61, scale 1:250,000.

Langenheim, V.E., Glen, J.M.G., Jachens, R.C., Dixon, G.L., Katzer, T.C., and Morin, R.L., (2000), Gravity and aeromagnetic constraints on the Virgin River Valley depression, Nevada-Utah-Arizona: U.S. Geological Survey Open file Report 00-407.

Morelli, Carlo, 1974, The International Gravity Standardization Net, 1971: International Association of Geodesy Special Publication no. 4, 194 p.

Plouff, Donald, 1977, Preliminary documentation for a FORTRAN program to compute gravity terrain corrections based on topography digitized on a geographic grid: U.S. Geological Survey Open-File Report 77-535, 45 p.

Ponce, D.A., 1997, Gravity data of Nevada: U.S. Geological Survey Digital Data Series DDS-42, 27 p., CD-ROM. 80,000 gravity stations.

Saltus, R.W., and Jachens, R.C., 1995, Gravity and basin-depth maps of the Basin and Range Province, western United States: U.S. Geological Survey Geophysical Investigations Map GP-1012, scale 1:2,500,000

Simpson, R.W., Jachens, R.C., Blakely, R.J., and Saltus, R.W., 1986, A new isostatic residual gravity map of the conterminous United States with a discussion on the significance of isostatic residual anomalies: Journal of Geophysical Research, v. 91, p. 8348-8372.

Stewart, J.H., 1980, Geology of Nevada: Nevada Bureau of Mines and Geology Special Publication 4, 136 p.

Stewart, J.H., and Carlson, J.E., 1978, Geologic map of Nevada: U.S. Geological Survey, scale 1:500,000

Telford. W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A., 1976, Applied Geophysics: Cambridge University Press, New York, NY, 860 p.

APPENDIX 1: Principal facts for new gravity stations in Coyote Spring Valley and vicinity.

Key to gravity file
Record 1 Station identifier
Record 2 Latitude (in degrees)
Record 3 Latitude (in minutes, to 0.01)
Record 4 Longitude (in degrees)
Record 5 Longitude (in minutes, to 0.01)
Record 6 Elevation (in feet, to 0.1)
Record 7 Observed Gravity (in mGal, to 0.01)
Record 8 Free Air Anomaly (in mGal, to 0.01)
Record 9 Simple Bouguer Anomaly (in mGal, to 0.01)
Record 10 Inner Zone Terrain Correction (in mGal, to 0.01)
Record 11 Total Terrain Correction (in mGal, to 0.01)
Record 12 Complete Bouguer Anomaly (in mGal, to 0.01)
Record 13 Isostatic Residual Anomaly (in mGal, to 0.01)

GLEN	3		114	34	15030	97968263	-5181	,	0	D	42	
C001	36	5742	114	5546	26017	97960458	-5178	-14051	6	70D	-14074	-8
C002	36	5943	114	5110	31515	97958799	-1958	-12707	7	194D	-12620	636
C002	36	5943	114	5110	31556	97958794	-1925	-12687	7	193D	-12602	654
C003	36	5919	114	5069	33539	97957767	-1052	-12491	93	373D	-12231	88
WCOO4	36	5902	114	5067	34375	97957316	-693	-12417	5	355D	-12176	02
WC005	36	5911	114	5075	33522	97957763	-1061	-12494	36	320D	-12286	925
C006	36	5920	114	5083	33002	97958009	-1317	-12573	22	273D	-12411	813
C007	36	5928	114	5092	32424	97958315	-1566	-12624	13	239D	-12495	738
WC008	36	5936	114	5100	31849	97958631	-1802	-12665	10	219D	-12553	693
WC009	36	5945	114	5129	31159	97958995	-2100	-12727	5	163D	-12671	593
WC010	36	5948	114	5145	30819	97959178	-2241	-12752	5	145D	-12713	560
C011	36	5950	114	515	30500	97959394	-2328	-12730	4	131D	-12704	577
WC012	36	5953	114	5172	30228	97959637	-2345	-12654	3	121D	-12638	652
WC013	36	5956	114	5187	29920	97959889	-2387	-12591	3	111D	-12584	713
WC014	36	5958	114	5200	2967	97960135	-2370	-12493	3	105D	-12491	12
WC015	36	5955	14	5217	29366	97960349	-2446	-12462	2	100D	-12464	
6	36	5954	114	52	29126	97960458	-2561	-12495	1	96D	-12501	
WC017	36	5955	114	5246	28968	97960578	-2591	-12471	1	91D	-12481	83
WC018	36	5957	114	5259	28891	97960631	-2614	-12467	1	87D	-12481	84
WC019	36	5960	114	527	287	97960707	-2630	-12452	2	84D	-12468	析
20	36	5962	114	528	28707	97960783	-2642	-12433	3	83D	-12451	
21	36	5967	114	5297	28723	97960857	-2560	-12356	6	82D	-12375	972
WC022	36	5972	114	5310	285	97960754	-2816	-12560	3	77D	-12583	771
WC023	36	5966	114	5294	28821	97960798	-2526	-12355	6	81D	-12375	969
24	36	5980	11	5320	28535	97960575	-3038	-12770	3	75D	-12795	568
WC025	36	5984	114	5333	28763	97960332	-3072	-12882	1	69D	-12914	57
WC026	36	5987	114	534	28550	97960465	-3144	-12881	4	71D	-12911	6
WC027	36	5989	114	535	28117	97960764	-3255	-12844	6	74D	-12870	514
WC028	36	5990	114	537	28	97960792	-3328	-12881	4	71D	-12910	
WC029	36	5992	114	5387	27801	97960809	-3511	-12993	3	70D	-13021	76
WC030	36	5993	114	5405	27748	97960793	-3579	-13042	1	66D	-13074	3
WC031	36	4605	114	5644	25062	97960133	-4756	-13304	3	152D	-13243	-636
WC032	36	4610	114	563	24801	97960249	-4893	-13352	3	150D	-13291	69
WC033	36	4617	114	5622	24555	97960367	-5016	-13391	2	147D	-13333	-73
WC034	36	4623	114	5611	24316	97960481	-5136	-13429	2	145D	-13372	-780
WC035	36	4628	114	5599	24067	97960602	-5256	-13464	2	144D	-13409	-824
WC036	36	4633	114	5588	23849	97960708	-5362	-13496	2	143D	-13441	-86
WC037	36	4639	114	5576	23661	97960798	-5458	-13528	1	140D	-13474	-900

WC038 36464511455652351197960894 -5511 -13530 WC039 $36468011455172300797961280-5650-13497$ WC040 $36463911455752365797960801-5458-13527$ WC041 $36464511455642349997960900-5517-13531$ WC042 $36465011455522341997960940-5559-13547$ WC043 36465611455412324197961051 -5624 -13551 WC044 36466111455302311997961146 -5651 -13536 WC045 $36467011455202310797961187-5634-13515$ WC046 $36468211455142297297961320-5646$-13481 WC047 $36468711455022283797961496-5604-13393$ WC048 $36469211454902268997961722-5524-13263$ WC049 36469611454772257397962004 -5357 -13056 WC050 36469811454632243697962349 -5144 -12796 WC051 $36470311454512233197962587-5012-12628$ WC052 $36471011454412222897962756-4950$-12531 WC053 $36471811454312214597962805-4990-12543$ WC054 $36472411454202205597962829-5060-12582$ WC055 $36473011454092201497962835-5101-12609$ WC056 $36473811453992193997962899-5119-12602$ WC057 $36474511453892186697963000-5097-12554$ WC058 $36475211453782178597963159-5024-12454$ WC059 $36475411453642176497963408-4798$-12221 WC060 $364757114535021663197963714-4591-11979$ WC061 36474711453372173797963758 -4463 -11877 WC062 $36473811453222164197963836-4462-11843$ WC063 $36469811454622243497962354-5141$-12792 WC064 36479411456732529597960544 -4399 -13026 WC065 $36479411456602504797960674-4502-13045$ WC066 $36479311456462479597960808-4604-13061$ WC067 36479211456332453797960951 -4702 -13071 WC068 $36479111456202429197961076-4807-13092$ WC069 $36479011456062406097961144-4955-13161$ WC070 $36478911455932384697961184-5115-13248$ WC071 36478811455792364397961241 -5247 -13311 WC072 $36478711455662346097961296-5363-13364$ WC073 36478611455532328997961371 -5447 -13390 WC074 $36478711455392317697961446-5480-13384$ WC075 $36478411455262299997961612-5476-13320$ WC076 $3647831145513 \quad 2295497961772$-5357 -13185 WC077 $36478311454992286797962057-5153-12953$ WC078 $36478211454862279197962325-4955-12729$ WC079 $36478111454722272997962581-4756-12508$ WC080 $36478011454592266197962747-4653-12382$ WC081 $36477911454462262697962716-4715-12432$ WC082 $36477811454322260897962698-4749-12459$ WC083 $36477711454192253597962732-4782-12468$ WC084 $36477611454062236697962817-4854-12483$ WC085 $36477511453922219197962936-4899-12467$ WC086 $36477311453792197897963182-4850-12346$ WC087 $3647721145365 \quad 2186297963433-4707-12163$ WC088 $36476811453522175997963609-4622-12043$ WC089 $36476111453402169197963750-4534-11932$ WC090 $36475611453272162497963795-4545-11920$ WC091 36475011453152158597963801 -4567 -11929 WC092 $36474211453022153797963838-4564-11909$ WC093 $36474311452942162097963757-4568$-11942 WC094 $36474011452772197297963484-4507-12001$

1	137D	-13479	-90
4	131D	-13451	-894
1	140D	-13474	-901
2	138D	-13479	-909
1	133D	-13500	-93
3	135D	-13502	-942
1	131D	-13490	-933
1	127D	-13474	-920
3	129D	-13436	-8
21	148D	-13329	-7
8	135D	-13212	-66
8	134D	-13005	-468
5	132D	-12747	-219
6	143D	-12568	-4
18	145D	-12469	50
17	143D	-12483	32
4	128D	-12535	-25
3	125D	-12566	-61
2	123D	-12560	-59
2	121D	-12515	-14
3	120D	-12415	83
4	118D	-12183	30
8	123D	-11938	547
25	138D	-11820	651
39	156D	-11768	687
5	132D	-12744	-217
2	137D	-12981	-25
3	136D	-13000	-2
4	135D	-13016	-307
3	133D	-13027	-327
3	132D	-13048	-35
3	130D	-13118	-43
3	129D	-13206	-535
2	127D	-13271	-610
2	126D	-13325	-6
2	124D	-13351	-708
11	130D	-13339	-70
1	120D	-13284	-662
0	116D	-13154	-54
15	128D	-12909	-30
21	132D	-12680	-8
21	130D	-12463	120
21	128D	-12338	235
4	108D	-12407	156
9	111D	-12432	121
9	110D	-12442	102
2	104D	-12462	
4	107D	-12442	82
11	118D	-12310	203
9	116D	-12128	374
12	121D	-12003	490
17	128D	-11886	59
11	124D	-11877	594
11	125D	-11885	573
3	119D	-11871	574
21	133D	-11890	551
27	126D	-1195	

-894
-901
-909
-936
-942
-933
-920
-880
-778
-666
-219
-47
50
32
-25
61
-14
83
309
547
651
687
-217
-254
-282
-307
-327
-356
-437
-535
-610

- 673
-708
-705
-662
-542
-306
-87
120
235
156
102
73
203
374
490
595
594
574
551
471

WC095	36	5742	114	5546	26243	97960464	-4959	-13910	1	D	-13941	-683
WC096	36	5736	114	5534	26297	97960380	-4984	-13953	0	2D	-13985	738
WC097	36	5735	114	5520	26247	97960293	-5116	-14068	1	63D	-14099	-859
WC098	36	5735	114	5507	26265	97960337	-5055	-14013	0	63 D	-14045	-810
WC099	36	5734	114	5493	26240	97960334	-5080	-14030	0	64D	-14060	-832
WC100	36	5734	114	5479	26248	97960304	-5103	-14055	0	65D	-14084	-862
WC1	36	5733	114	5466	26354	97960220	-5086	-14074	0	5 D	-14103	-888
WC	36	5733	114	545	26	979	-5089	-14082	0	7 D	-14110	-901
W	36	5733	114	5439	263	97960208	-5094	-14084	0	69D	-14110	-906
W	36	5733	114	5425	26519	97960112	-5039	-14083	1	70 D	-14108	-912
WC105	36	5732	114	5411	26418	97960199	-5045	-14055	0	73D	-14077	-888
WC106	36	5731	114	5398	26445	97960188	-5029	-14049	0	76D	-14067	885
WC107	36	5731	114	5384	26525	979	-4980	-14027	1	80D	-14042	-865
WC108	36	5730	114	5372	26554	97960162	-4951	-14008	0	82D	-14021	-849
WC109	36	5729	114	5358	26593	97960180	-4895	-13965	0	87D	-13973	-805
WC110	36	5731	114	5344	26610	97960240	-4822	-13898	0	94D	-13899	-736
	36	5729	114	5330	26616	97960300	-4754	-13831	1	103D	-13824	-669
W	36	573	114	53	26	979	-4630	-1	2	7 D	-13758	-608
WC113	36	5731	114	5303	27099	9796	-4442	-13685	3	2D	-13669	-524
WC114	36	5732	114	5290	27415	97960076	-4231	-13581	4	117D	-13561	-420
WC115	36	5733	114	5276	27810	97959982	-3955	-13440	8	127D	-13411	-275
W	36	5732	114	52	27	979	-3845	-13388	8	131D	-13356	-223
WC	36	5733	114	5263	28	97959903	-3668	-13286	8	135D	-13250	119
WC118	36	5735	114	5249	28629	97959854	-3316	-13080	7	144D	-13037	1
WC119	36	5736	114	5231	29181	97959779	-2873	-12826	8	163D	-12764	355
WC120	36	5740	114	5223	293	97959681	-2780	-12804	10	173D	-12733	387
WC121	36	57	114	52	29	97959753	-2200	-12408	23	199D	-12313	800
WC122	36	5738	114	5205	29959	97959569	-2354	-12572	55	240D	-12436	4
WC123	36	5727	114	5207	29873	97959634	-2354	-12543	96	283D	-12364	737
WC124	36	5717	114	5210	30322	97959717	-1835	-12176	99	273D	-12008	1087
WC130	36	474	114	52	22	97963219	-4515	-12102	32	124D	-12061	363
WC131	36	4742	114	5254	22598	97962923	-4481	-12188	32	115D	-12157	255
WC132	36	4744	114	5241	22792	97962738	-4487	-12260	27	105D	-12239	165
WC133	36	4746	114	5227	229	97962576	-4502	-12330	33	107D	-12307	8
WC134	36	4747	114	5214	231	97962424	-4501	-12385	32	103D	-12367	9
WC135	36	4749	114	5201	23273	97962299	-4481	-12418	28	96D	-12408	29
WC136	36	4751	114	5188	23430	97962189	-4446	-12437	26	1.	-12432	61
WC137	36	4753	114	517	23520	97962	-4390	-12412	25	D	-12411	-47
WC	36	4756	114	516	23548	97962	-4332	-12363	26	87D	-12363	6
WC139	36	4759	114	5148	23377	97962433	-4263	-12236	15	77D	-12245	104
WC140	36	4761	114	5139	23490	97962460	-4133	-12144	8	68 D	-12162	8
WC141	36	4758	114	5134	23359	97962578	-4134	-12101	16	78 D	-12109	230
WC	36	4747	114	5120	23509	97962500	-4055	-12073	30	89D	-12070	249
WC143	36	4744	114	5107	23425	97962587	-4042	-12032	12	71 D	-12047	261
WC144	36	4746	114	5093	23328	97962721	-4002	-11959	10	69D	-11975	325
WC145	36	4748	114	5080	23384	97962739	-3935	-11910	7	65D	-11931	363
WC146	36	4749	114	5066	236	97962	-3795	-11870	4	59D	-11898	390
WC147	36	4751	114	5053	23782	97962638	-3666	-11777	4	59D	-11805	478
WC148	36	4753	114	5039	23834	97962712	-3546	-11675	4	58D	-11704	574
WC149	36	4749	114	5025	23524	97962925	-3618	-11642	19	74 D	-11654	61
WC150	36	4745	114	5010	23612	97962881	-3574	-11627	25	79D	-11635	619
WC151	36	4739	114	4998	23617	97962893	-3549	-11603	24	77D	-11613	630
WC152	36	4727	114	4986	23718	97962830	-3499	-11589	23	76D	-11599	628
WC153	36	4717	114	4973	23570	97962928	-3526	-11565	27	81D	-11571	642
WC154	36	4711	114	4961	23121	97963250	-3618	-11503	24	78D	-11511	689
WC155	36	4704	114	4948	22910	97963382	-3674	-11488	5	59D	-11513	674
WC156	36	4698	114	4936	22880	97963401	-367	-11478	13	66	-114	680

WC157 364691 114 49242261297963586 -3731 -11443 WC158 $36468411449112230697963795-3800-11408$ WC159 $364681 \quad 114489922160 \quad 97963892-3836-11394$ WC160 $364678114 \quad 4886 \quad 22225 \quad 97963855-3807-11387$ WC161 $36467411448742231297963826-3749-11359$ WC162 $36467111448612230997963849-3724-11333$ WC163 $3646671144848 \quad 22686 \quad 97963637-3576-11313$ WC164 $3646631144835 \quad 2255197963795-3539-11230$ WC165 $36466011448212237797964016-3477-11109$ WC166 $36465611448082261497963947-3318$-11031 WC167 $36465311447952250497964074-3290-10965$ WC168 $36465011447842236897964204-3283-10912$ WC169 $36464311447722255097964119-3187-10878$ WC170 $36463711447712271197964160-2986-10732$ WC171 $364630 \quad 1144762 \quad 2248797964190-3157-10826$ WC172 $364621 \quad 1144751 \quad 2237597964324-3115-10746$ WC173 $364613114 \quad 4740 \quad 2243797964367-3002-10655$ WC174 $364604 \quad 1144729 \quad 2267297964211$-2924 -10657 WC175 $3645961144718 \quad 2263597964167-2991-10711$ WC176 $3645901144706 \quad 22294 \quad 97964379-3091-10695$ $\begin{array}{llllllllll}W C 177 & 36 & 4586 & 114 & 4694 & 22159 & 97964470 & -3122 & -10679\end{array}$ WC178 $36458211446822223697964460-3053-10637$ WC179 364589 114 $4681 \quad 22879 \quad 97964129-2790-10593$ WC180 $3645921144686 \quad 2270497964235-2853-10596$ WC181 $36461311447242311397963984-2749-10632$ WC183 $3644771144807 \quad 2028797965449-3745-10665$ WC184 $36448211448092047697965367-3657-10641$ WC185 $364475114 \quad 4825 \quad 20249 \quad 97965506-3721-10627$ WC186 $36447811448372082897965404-3283-10387$ WC187 $364483114485120419 \quad 97965306-3773-10737$ WC188 $36448711448572009397965221-4170-11023$ WC189 $364498 \quad 114 \quad 48682011497965177-4210-11071$ WC190 $364511 \quad 114 \quad 4875 \quad 20118 \quad 97965128-4274-11136$ WC191 364518 114 4885 20136 $97965078-4318-11185$ WC192 $364523114489720178 \quad 97965002-4361-11243$ WC193 364523 114 $4912 \quad 20244 \quad 97964925-4376-11281$ WC194 $36452611449262032997964861-4365-11298$ WC195 $36452911449392039097964805-4368-11322$ WC196 $36453311449512037597964806-4387-11336$ WC197 $36453711449642035797964805-4410-11353$ WC198 $364541 \quad 1144977 \quad 2038597964786-4409-11361$ WC199 $36454511449892042297964718-4448$-11413 WC200 $3645491145002 \quad 20469 \quad 97964594-4533-11514$ WC201 $364553114501420477 \quad 97964489-4637-11620$ WC202 $364560 \quad 1145025 \quad 20544 \quad 97964370-4703-11709$ WC203 $36456611450362055797964266-4803-11814$ WC204 $364570114504920619 \quad 97964168-4849-11881$ WC205 $3645741145062 \quad 2062197964127-4893-11926$ WC206 $364578114507420645 \quad 97964103-4901-11942$ WC207 $364581 \quad 1145087 \quad 20679 \quad 97964094-4882-11935$ WC208 $364585114509920723197964105-4835-11903$ WC209 $3645891145112 \quad 2083697964082-4758-11864$ WC210 $36459211451252094197964079-4667-11809$ WC211 $36459711451372095397964077-4664-11811$ WC212 $364601 \quad 11451492100197964056-4646-11809$ WC213 $3646051145162 \quad 2104797964034-4631-11809$ WC214 $364608114517520979 \quad 97964054-4679-11834$

26	80D	-11447	71
10	67D	-11424	26
8	66D	-11410	731
4	61D	-11409	721
2	58D	-11384	36
5	61 D	-11355	755
22	74D	-11324	75
3	56D	-11258	31
5	61D	-11131	947
1	54D	-11060	1008
3	58D	-10991	1070
5	63D	-10933	1117
10	63D	-10898	1139
6	56D	-10760	1271
30	82D	-10828	1194
12	64 D	-10765	1245
18	68D	-10670	1327
4	49D	-10691	1294
4	48D	-10747	1227
12	60D	-10717	1246
17	68D	-10694	1259
26	75D	-10645	1297
67	109D	-10568	1378
63	107D	-10573	1379
16	60D	-10658	1330
65	147D	-10594	1351
53	130D	-10588	1361
53	133D	-10570	1385
37	104D	-10361	1603
33	110D	-10704	1273
38	124D	-10975	1009
25	111D	-11035	62
60	146D	-11066	6
41	127D	-11134	88
72	159D	-11161	872
67	155D	-11202	842
33	122D	-11253	802
11	102D	-11297	767
13	107D	-11306	768
31	129D	-11301	785
37	137D	-11301	797
30	131D	-11359	48
6	108D	-11483	634
25	130D	-11568	559
4	108D	-11679	461
27	133D	-11759	392
2	109D	-11849	312
2	112D	-11892	281
2	114D	-11905	280
2	117D	-11896	300
5	123D	-11859	348
18	135D	-11807	411
2	120D	-11767	462
1	123D	-11767	471
1	126D	-11762	487
0	129D	-11759	501
1	140D	-11772	4

WC215	36	4612	114	5187	20953	97964080	-4683	-11829	1	$149 D$	-11760	523
WC216	36	4616	114	5201	20965	97964080	-4678	-11828	2	$160 D$	-11747	547
WC217	36	4624	114	5211	21032	97964045	-4661	-11834	1	$158 D$	-11755	551
WC218	36	4628	114	5223	21066	97964060	-4620	-11805	3	$168 D$	-11715	601
WC219	36	4629	114	5236	21184	97964049	-4521	-11747	27	$204 D$	-11622	704
WC220	36	4626	114	5252	21271	97964092	-4392	-11647	100	$303 D$	-11424	911
WC221	36	4629	114	5252	21312	97964085	-4365	-11634	80	$275 D$	-11439	898
WC222	36	5736	114	5534	26299	97960382	-4980	-13949	0	$62 D$	-13982	-735
WC223	36	5747	114	5558	26342	97960444	-4893	-13878	1	$62 D$	-13910	-643
WC224	36	5753	114	5570	26459	97960410	-4826	-13850	1	$62 D$	-13883	-607
WC225	36	5758	114	5581	26389	97960509	-4800	-13800	1	$63 D$	-13832	-550
WC226	36	5763	114	5593	26245	97960664	-4788	-13739	2	$64 D$	-13769	-478
WC227	36	5769	114	5604	26125	97960791	-4782	-13692	1	$64 D$	-13722	-421
WC228	36	5774	114	5616	26046	97960899	-4756	-13639	1	$65 D$	-13667	-355
WC229	36	5780	114	5628	26042	97960943	-4724	-13606	1	$66 D$	-13634	-314
WC230	36	5786	114	5639	26195	97960868	-4664	-13598	1	$65 D$	-13627	-297

