UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Office of Earthquake Studies

PROCEEDINGS OF

CONFERENCE VIII

ANALYSIS OF ACTUAL FAULT ZONES IN BEDROCK

Convened Under Auspices of

NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM

1-5 April, 1979

OPEN-FILE REPORT 79-1239

Any use of trade names and trademarks in this publication is for descriptive purposes only and does not constitute endorsement by the U. S. Geological Survey

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature

Menlo Park, California

CONFERENCES TO DATE

Conference	I	Abnormal Animal Behavior Prior to Earthquakes, I
Conference	II	Experimental Studies of Rock Friction with Application to Earthquake Prediction
Conference	111	Fault Mechanics and Its Relation to Earthquake Prediction
Conference	IV	Use of Volunteers in the Earthquake Hazards Reduction Program
Conference	v	Communicating Earthquake Hazard Reduction Information
Conference	VΙ	Methodology for Identifying Seismic Gaps and Soon-To Break Gaps
Conference	VII	Stress and Strain Measurements Related to Earthquake Prediction
Conference	VIII	Analysis of Actual Fault Zones in Bedrock

UNITED STATES

DEPARIMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Office of Earthquake Studies

PROCEEDINGS OF

CONFERENCE VIII

ANALYSIS OF ACTUAL FAULT ZONES IN BEDROCK

Convened Under Auspices of

NATIONAL EARTHQUAKE HAZARDS REDUCTION PROGRAM

1-5 April 1979

Co-Organizers

Robert Speed Northwestern University Evanston, Illinois 60201

Robert Sharp United States Geological Survey Office of Earthquake Studies Menlo Park, California 94025

Convener

Jack F. Evernden United States Geological Survey Office of Earthauake Studies Menlo Park, California 94025

OPEN-FILE REPORT 79-1239

This report is preliminary and has not been edited or reviewed for conformity with Geological Survey standards and nomenclature

The views and conclusions contained in this document are thosef the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government.

Menlo Park, California

CONTENTS

Pr	reface	
	R. C. Speed and R. V. Sharp	1
Ι	Architecture and Kinematics of Fault Zones	
	Shear Zones	
	John G. Ramsay	2
	Historic Surface Faulting Map Patterns, Relation to Subsurface Faulting, and Relation to Preexisting Faults	
	M. G. Bonilla	36
	Implications of Surficial Strike-Slip Fault Patterns for Simplification and Widening with Depth	
	Robert V. Sharp	66
	Characteristics of Faults and Shear Zones as Seen in Mines at Depths as Much as 2.5 KM Below the Surface	
	Robert E. Wallace	79
	Observations and Analysis of Structures in Exhumed Mine-Induced Faults	
	A. McGarr and D. Pollard	101
	Extension Faulting in the Great Basin: Kinematics and Possible Changes with Depth	
	R. Speed	121
	Features and History of Activity of Major Fault Zones in the Berridale Region, Snowy Mountains, Southeatern Australia	
	I. B. Lambert	139
	A Review of Major Faults in Svalbard	
	W. B. Harland	153
	The Walls Boundary Fault, Shetland, British Isles	
	Derek Flinn.	181
	Observations on Deep Thrust Faults on the West Side of the Southern Canadian Rockies	
	P. S . Simony	201

Seismic Widths of Active Crustal Fault Zones	
Thomas C. Hanks.	215
Strain and Strain Rate Gradients at the Ductile Levels of Fault Displacements	
Juan Watterson	235
Some Characteristics of the Eastern Peninsular Ranges Mylonite Zone	
Robert V. Sharp	258
II Products, Conditions, and Mechanisms of Eailure	
Preliminary Analysis of Clay Gouge from a Well in the San AndreasFault Zone in Central California	
Richard Liechti and Mark D. Zoback	268
Fault Rocks and Structure as Indicators of Shallow Earthquake Source Processes	
Richard H. Sibson	276
Experimental Studies of Simulated Gouge and Their Application to Studies of Natural Fault Zones	
John M. Logan, M. Friedman, N. Higgs, C. Dengo, and T. Shimamoto	305
Fault Zones, Gouge and Mechanical Properties of Clays Under High Pressure	
Francis T. Wu, Herman E. Roberson, Chi-yuen Wang and N.H. Maa	344
Evidence for a Variation of Friction Along Natural Fault Zones	
Terry Engelder	377
Paleostress Analysis of Deformation-Induced Microstructures: Moine Thrust Zone and Ikertoq Shear Zone	
D.L. Kohlstedt, Reid F. Cooper, Maura S. Weathers and John Bird	394
Microstructure and Stress Analysis of the Mullen Creek - Nash Fork Shear Zone, Wyoming	
Maura S. Weathers, John Bird, Reid F. Cooper and D.L. Kohlstedt	426

The Geometry and Microstructure of a Range of QP-Mylonite Zones $ m A$ Field Test of the Recrystallized Grainsize Palaeopiezometer	
M. A. Etheridge and ${\sf J}$. C. Wilkie	448
Chemical and Isotopic Redistribution in Zones of Ductile Deformation in a Deeply Eroded Mobile Belt	
D. Bridgwater	505
Fluid Flow Around Faults: Field Evidence for Dilatancy Pumping?	
Richard H. Sibson	527
Deformation and Fusion of Two Faultrocks in Relation to their Depth of Formation: the Hyalomyloniteof Langtang (Himalaya) and the Pseudotachylites of the Silvretta Nappe (Eastern Alps)	
Ludwig Masch	528
Metamorphism, Argon Depletion, Heat Flow and Stress on the Alpine Fault	
Christopher H. Scholz, John Beavan and Thomas C. Hanks	534
Magnitude of Shear Stress on the San Andreas Fault: Implications from a Stress Measurement Profile at Shallow Depth	
Mark D. Zoback and John C. Roller	
III <u>Comments</u> A. Summaries of Each Conference Day	
Summary of Discussion on Papers Concerned with Fault Geometry, Especially Involving Observations in the Upper or Brittle Portion of the Crust	
Art McGarr	587
Summary of Discussion on Kohlstedt's, Weathers', and Etheridge's Papers David Kohlstedt	590
Comments of Talks by Watterson, Sibson, and Logan T. Engelder	591
Summary of Discussion, Papers by Bridgewater, Sibson, Masch and and Scholz, et. al.	500
M. A. Etheridge	592
B. Comment by Attendee	
Comments by John M. Logan John M. Logan	594

d

PREFACE

R. C. Speed R. V. Sharp

A potential avenue of earthquake research that seems little explored except for the work of one or two individuals is the geologic analysis of actual fault zones to assess the geometry, motions, conditions, mechanisms, and dynamics of the faulting process. In particular, how do these aspects vary with depth and do faults preserve some record of seismic failure at focal depths? Is it possible to construct a generalized global model of depthwise properties of major fault zones in the upper lithosphere? The idea behind the Palm Springs conference was the question whether worldwide observations of active and ancient faults, now exposed in mines and at the surface by erosion, could reveal a set of common depthwise characteristics that could be synthesized into a general model.

The conference, therefore, brought together **25** scientists, chiefly observationalists, who have studied faults at varied exposure depths and employed different interpretive techniques. From these proceedings, the state of the art in understanding the properties of real fault zones may become clearer than was previously possible, and the feasibility of developing a fault model may be established. Because of time limitations, an attempt to develop a concensus fault model was not made at the conference.

The papers fall into two broad topical divisions:

1. Architecture and kinematics of fault zones: geometry of the region of failure; evolution of the larger structures of the zone; distributions of discrete slip and continuum deformation; fracture patterns; effects of lateral heterogeneities; contrasts in the character of the brittle and ductile regions and the nature of the transitional zone.

2. <u>Conditions, mechanisms, and products of faulting</u>: fault rocks and fine structure; origin and significance of cataclasite, mylonite, and pseudo-tachylite; fault plane and faulting-induced wallrock structures in brittle and ductile zones; interpretations from actual fault zones (in the light of experiments and theory) of mineral and failure mechanisms at various depth levels/rheologic zones; failure criteria in brittle and ductile zones and possible interactions between zones; thermal regime; existence and role of pore fluids; retention of fluids; stress differences at failure.